

User Manual

List of revisions

No.	Date	Version	Revision
1	2007	1.00	created
2	2007. 11. 27	1.01	include FnBus communication register

Contents

1. Product Specification

- 1) General Specifications
- 2) CANopen Communication Specification

CREVIS

2. CANopen Setting

- 1) Communication parameter setting
- 2) I/O allocation
- 3) CANopen I/O Data Format Setting
- 4) Default Identifier
- 5) Communication

3. CANopen Network Installation

- 1) CAN Network start-up
- 2) Boot-up message
- 3) Node Guarding
- 4) Life Guarding

4. Check Operation Status

- 1) RUN : CAN-RUN Status LED
- 2) ERROR : CAN-Error LED
- 3) I/O : Expansion Module Status LED
- 4) Field Power : Field Power Status LED

1. Product Specifications

1) General Specifications

Iten	n	Specifications	Remarks			
Tomporatura	Operating	-0℃ to +60℃ (32°F to 140°F)				
remperature	Storage	-40℃ to +85℃ (-40°F to 185°F)				
Lumidity	Operating	5 to 95% RH (Non-condensing)				
Humaity	Storage 5 to 95% RH (Non-condensing)					
Vibration immuni	it.	10 TO 55Hz,double amplitude of 0.75mm,				
	ity	10minutes on each of 3 axes (X,Y,Z)				
Shock Immunity		Peak acceleration and duration 15g/11ms,				
Shock Immunity		3 times on each of 3 axes (X,Y,Z)				
Capsuling		Din rail or screw tightening				

2) CANopen Communication Specification

Item	Specification	Remarks
Network Protocol	8 transmit PDOs 8 receive PDOs 1 standard SDO(server) 1 emergency object 1 SYNC node guarding	
Network length	Depending on Baudrate	
Number of Nodes	99 Node/Max	Rotary switch
Communication speed	10Kbits ~ 1Mbits	Auto Baudrate selection
Number of Expansion I/O	Max. 32 Slots	
Isolation	Non-Isolation	
CANopen Power	Rate voltage: 24V DC nominal Voltage range: 11 to 28.8 V DC Current consumption: Max 1.5w	

User Manual

CANopen setting include the following configurations:

- Communication parameter setting
- I/O allocation
- Default Identifier
- COMMUNICATION

1) Communication Parameter Setting

Node Address Setting

- NA-9161 Node address is determined by the node address rotary switch on the front panel of adapter module.
- Set node address is recognized on the power-on of adapter module.

Ex) When node address is set as 27: Device MAC ID Setting :(2*10 + 1*7)= 27

X 10 (MSD)↔

X1 (LSD)₽

* Each CANopen Adaptor has MAC ID from no.0 to 99

Communication Speed Setting

- See Master Setting about communication speed setting.

User Manual

2) I/0 Allocation

The expansion Module connecting to Adaptor has 3 types of Data types (I/O Data, Configuration Parameters, Memory Resister) These data are exchanging I/O Process image Data via FnBus Protocol between Adaptor and Expansion Module as below ;

User Manual

	Medule Description							
Slot Address	Module Description							
0	CANopen Adaptor							
1	4-Discrete input							
2	8-Discrete input							
3	2-Analog input							
4	16-Discrete input							
5	4-Discrete input							
6	8-Discrete input							
7	4-Discrete input							
8	2-Analog input							
9	16-Discrete input							
10	1Ch , high speed counter							

• Compress mode data format

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Index	Sub-In.
0		Analog Input Ch0 low byte (Slot#3)								0x01
1		Analog Input Ch0 High byte (Slot#3)								0x01
2		A	Analog Ir	nput Ch1	low byte	e (Slot#3)		0x6401	0x02
3		А	nalog In	put Ch1	High byt	e (Slot#3	5)		0x6401	0x02
4		A	Analog Ir	nput Ch0	low byte	e (Slot#8)		0x6401	0x03
5		A	nalog In	put Ch0	High by	e (Slot#8	5)		0x6401	0x03
6		A	Analog Ir	nput Ch1	low byte	e (Slot#8)		0x6401	0x04
7		A	nalog In	put Ch1	High byt	e (Slot#8	5)		0x6401	0x04
8	Discr	ete Input	t 4pts(Sl	ot#2)	Disc	ete Inpu	t 4pts(SI	ot#1)	0x6000	0x01
9	Discr	Discrete Input 4pts(Slot#4) Discrete Input 4pts(Slot#2)							0x6000	0x02
10		Discrete Input 8pts(Slot#4)						0x6000	0x03	
11	Discr	Discrete Input 4pts(Slot#5) Discrete Input 4pts(Slot#4)						0x6000	0x04	
12			Disc	rete Inpu	it 8pts(SI	ot#6)			0x6000	0x05
13	Discr	ete Input	t 4pts(SI	ot#9)	Disc	ete Inpu	t 4pts(SI	ot#7)	0x6000	0x06
14			Disc	rete Inpu	it 8pts(Sl	ot#9)			0x6000	0x07
15					Disc	rete Inpu	t 4pts(SI	ot#9)	0x6000	0x08
16			HSC	Input 0	byte(Slo	t#10)			0x3000	0x01
17		HSC Input 1 byte(Slot#10)							0x3000	0x02
18		HSC Input 2 byte(Slot#10)							0x3000	0x03
19		HSC Input 3 byte(Slot#10)							0x3000	0x04
20			HSC	Input 4	byte(Slo	t#10)			0x3000	0x05
21			HSC	Input 5	byte(Slo	t#10)			0x3000	0x06

User Manual

♦ Non-compress mode data format

Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								Index	Sub-In.
0	Analog Input Ch0 low byte (Slot#3)								0x6401	0x01
1	Analog Input Ch0 High byte (Slot#3)								0x6401	0x01
2		ļ	Analog Ir	put Ch1	low byte	e (Slot#3))		0x6401	0x02
3		А	nalog In	put Ch1	High byt	e (Slot#3	5)		0x6401	0x02
4		ŀ	Analog Ir	put Ch0	low byte	e (Slot#8))		0x6401	0x03
5		А	nalog In	put Ch0	High byt	e (Slot#8	5)		0x6401	0x03
6		ļ	Analog Ir	put Ch1	low byte	e (Slot#8))		0x6401	0x04
7		А	nalog In	put Ch1	High byt	e (Slot#8	5)		0x6401	0x04
8		Rese	erved		Disci	ete Input	t 4pts(SI	ot#1)	0x6000	0x01
9			Disci	ete Inpu	t 8pts(Sl	ot#2)			0x6000	0x02
10	Discrete Input low 8pts(Slot#4)							0x6000	0x03	
11	Discrete Input High 8pts(Slot#4)								0x6000	0x04
12		Rese	erved		Disci	ete Input	t 4pts(SI	ot#5)	0x6000	0x05
13			Disci	ete Inpu	t 8pts(Sl	ot#6)			0x6000	0x06
14		Rese	erved		Disci	ete Input	t 4pts(SI	ot#7)	0x6000	0x07
15			Discret	e Input I	ow 8pts(Slot#9)			0x6000	0x08
16			Discrete	e Input H	ligh 8pts	(Slot#9)			0x6000	0x09
17		Rese	erved		Discr	ete Input	4pts(Slo	ot#10)	0x6000	0x0A
18			HSC	Input 0	byte(Slo	t#10)			0x3000	0x01
19	HSC Input 1 byte(Slot#10)							0x3000	0x02	
20	HSC Input 2 byte(Slot#10)							0x3000	0x03	
21			HSC	Input 3	byte(Slo	t#10)			0x3000	0x04
22			HSC	Input 4	byte(Slo	t#10)			0x3000	0x05
23			HSC	Input 5	byte(Slo	t#10)			0x3000	0x06

User Manual

- Output Image Data is determined by the position of Slot and Expansion Module.
 - = For Example

Slot Address	Module Description						
0	CANopen Adaptor						
1	4-Discrete Output						
2	8-Discrete Output						
3	2-Analog Output						
4	16-Discrete Output						
5	4-Discrete Output						
6	8-Discrete Output						
7	2-Relay Output						
8	2-Relay Output						
9	2-Analog Output						
10	16-Discrete Output						
11	1Ch, High speed counter						

• Compress mode data format

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Index	Sub-In.
0	Analog Output Ch0 low byte (Slot#3)								0x6411	0x01
1		Ai	nalog Ou	tput Ch0	High by	rte (Slot#	3)		0x6411	0x01
2		А	nalog O	utput Ch1	1 low by	te (Slot#3	3)		0x6411	0x02
3		Ai	nalog Ou	tput Ch1	High by	rte (Slot#	3)		0x6411	0x02
4	Analog Output Ch0 low byte (Slot#9)							0x6411	0x03	
5	Analog Output Ch0 High byte (Slot#9) 0x6411 0:							0x03		
6		А	nalog O	utput Ch1	1 low by	te (Slot#9	9)		0x6411	0x04
7		Ai	nalog Ou	tput Ch1	High by	rte (Slot#	9)		0x6411	0x04
8	Discrete Output 4pts(Slot#2) Discrete Output 4pts(Slot#1)							lot#1)	0x6200	0x01
9	Discrete Output 4pts(Slot#4) Discrete Output 4pts(Slot#2) 0x								0x6200	0x02
10			Discrete	e Output	low 8pts	(Slot#4)			0x6200	0x03

User Manual

11	Discrete Output 4pts(Slot#5)	0x6200	0x04		
12	Discrete Outp	0x6200	0x05		
13	Discrete Output 4pts(Slot#10)	0x6200	0x06		
14	Discrete Output H	0x6200	0x07		
15	Reserved	0x6200	0x08		
16	HSC Output lov	0x3200	0x01		
17	HSC Output Hig	gh byte(Slot#10)		0x3200	0x02

♦ Non-compress mode data format

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Index	Sub-In.
0	Analog Output Ch0 low byte (Slot#3)								0x6411	0x01
1	Analog Output Ch0 High byte (Slot#3)								0x6411	0x01
2		А	nalog Ou	utput Ch1	1 low byt	e (Slot#3	3)		0x6411	0x02
3		Ar	nalog Ou	tput Ch1	High by	te (Slot#	3)		0x6411	0x02
4		А	nalog Ou	utput Ch) low byt	e (Slot#9	9)		0x6411	0x03
5		Ar	nalog Ou	tput Ch0	High by	te (Slot#	9)		0x6411	0x03
6		А	nalog Ou	utput Ch1	1 low byt	e (Slot#9	9)		0x6411	0x04
7		Ar	nalog Ou	tput Ch1	High by	te (Slot#	9)		0x6411	0x04
8		Rese	erved		Discre	ete Outpu	ut 4pts(S	lot#1)	0x6200	0x01
9			Discre	ete Outpu	ut 8pts(S	lot#2)			0x6200	0x02
10	Discrete Output low 8pts(Slot#4)							0x6200	0x03	
11	Discrete Output High 8pts(Slot#4)							0x6200	0x04	
12		Rese	erved		Discre	ete Outpu	ut 4pts(S	lot#5)	0x6200	0x05
13			Discre	ete Outpu	ut 8pts(S	lot#6)			0x6200	0x06
14			Rese	erved			Discrete 2pts(S	e Output Slot#7)	0x6200	0x07
15	Reserved Discrete Output 2pts(Slot#8)							e Output Slot#8)	0x6200	0x08
16	Discrete Output low 8pts(Slot#10)							0x6200	0x09	
17	Discrete Output High 8pts(Slot#10)							0x6200	0x0A	
18	Reserved Discrete Output 4pts(Slot#11)						ot#11)	0x6200	0x0B	
19			HSC C	Dutput lo	w byte(S	lot#11)			0x3200	0x01
20			HSC O	utput Hiç	gh byte(S	Slot#11)			0x3200	0x02

User M	lanual		que	1		CREVIS	
 3) CANope I/O Data for Software S EnBus Co 	n I/O Data ormat of NA- Setting Data for mmunication	Format Se -9161 is able ormat by char	to be	change object v	d to CA alue of	Nopen Configuration Configuration software.	
- The inde	x 0x4500 are	can be acce	ss via	SDO.	EnDua		
			Byte		Type		
Index		Byte (Dyte	unsia	ned8	EnBus Error Code	
				anoig			
0x4500	0x01	Byte (01	unsigr	ed32	Error Slot number	
		Byte (02	unsig	ned8	Reserve	
		Byte (03	unsigr	ed32	Field Power state 0x80: not supply, 0x00: sup	
Ex) Data Read : Id=RxSDO DLC=8; Data=40 00 45 01 xx xx xx xx							
FnBus Dat	a mode : The	e process ima	ide ar	e can b	e chano	ed via this obiect.	
Index	Sub-Inde	x Decimal	Bvte	Data	Type	Description	
					-)	0 : non-compress mode	
0x4500	0x02	Byte (00	unsigned8		1 : compress mode	
Ex) Data Read : Id=RxSDO DLC=8; Data=40 00 45 02 xx xx xx xx Data Write : Id=RxSDO DLC=8; Data=2F 00 45 02 01 xx xx xx(compress mode set)							
Expansion	module active	e flag data fo	Data=: rmat :	2F 00 4 The IO	5 02 0 [.] slot ar	c xx xx xx 1 xx xx xx(compress mode s e deactivated via the bit flac	
Expansion	module active	e flag data for	Data=: rmat :	2F 00 4 The IO	5 02 0 slot ar	<pre>x xx xx xx 1 xx xx xx(compress mode s e deactivated via the bit flag Description</pre>	
Expansion Index	module active	e flag data for Data Type	Data=: rmat: Data Bi	2F 00 4 The IO 1 Type t 00	5 02 0 slot ar Ac	x xx xx xx 1 xx xx xx(compress mode s e deactivated via the bit flag Description tive/Deactiveate flag for slot	
Expansion Index	module active	e flag data for Data Type	Data= rmat : Data Bi	2F 00 4 The IO Type t 00	5 02 0 slot ar Ac positi	c xx xx xx 1 xx xx xx(compress mode = e deactivated via the bit flag Description tive/Deactiveate flag for slot on #1 (0:Active, 1:Deactivate tive/Deactiveate flag for slot	
Expansion Index	module active	e flag data for Data Type	Data= rmat : Data Bi Bi	2F 00 4 The IC Type t 00 t 01	5 02 0 slot ar Ac positi Ac positi	c xx xx xx 1 xx xx xx(compress mode s e deactivated via the bit flag <u>Description</u> tive/Deactiveate flag for slot on #1 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #2 (0:Active, 1:Deactivate	
Expansion Index	module active Sub-Index	e flag data for Data Type	Data= rmat : Data Bi Bi	2F 00 4 The IC a Type t 00 t 01 t 02	5 02 0 slot ar Ac positi Ac positi	x xx xx xx 1 xx xx xx(compress mode s e deactivated via the bit flag <u>Description</u> tive/Deactiveate flag for slot on #1 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #2 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #3 (0:Active, 1:Deactivate	
Expansion Index 0x4500	module active Sub-Index 0x03	e flag data for Data Type unsigned32	Data= rmat : Data Bi Bi	2F 00 4 The IC The IC Type t 00 t 01 t 02	5 02 0 slot ar Ac positi Ac positi Ac	c xx xx xx 1 xx xx xx(compress mode = e deactivated via the bit flag <u>Description</u> tive/Deactiveate flag for slot on #1 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #2 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #3 (0:Active, 1:Deactivate :	
Expansion Index 0x4500	module active Sub-Index 0x03	e flag data for Data Type unsigned32	Data= rmat : Data Bi Bi Bi	2F 00 4 The IO The IO Type t 00 t 01 t 02 : t 30	5 02 0 slot ar Ac positi Ac positi	x xx xx xx 1 xx xx xx(compress mode solution the deactivated via the bit flag Description tive/Deactiveate flag for slot on #1 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #3 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #31 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #31 (0:Active, 1:Deactivate tive/Deactiveate flag for slot on #31 (0:Active, 1:Deactivate tive/Deactiveate flag for slot	

User Manual

Digital Data Bit size Information

- The index is can be access via SDO.

Input bit size information : All digital input data are counted

Index	Sub-Index	Decimal Byte	Data Type	Description
0x2020	0x01	Byte 00	unsigned8	All Digital input bit size

Ex) Data Read : Id=RxSDO DLC=8; Data=40 20 20 00 xx xx xx xx

Output bit size information : All digital output data are counted

Index	Sub-Index	Decimal Byte	Data Type	Description
0x2220	0x01	Byte 00	unsigned8	All Digital output bit size

Ex) Data Read : Id=RxSDO DLC=8; Data=40 20 22 00 xx xx xx xx

Special IO Data Block

Special Input Block

Index	Sub-Index	Decimal Byte	Data Type	Description
	0x01	Byte 00	unsigned8	0h~7h Special input data
0v2000	0x02	Byte 01	unsigned8	8h~15h Special input data
0x3000	:	:	:	:
	0x64	Byte 64	unsigned8	1F8h~1FFh Special input data

Special Output Block

Index	Sub-Index	Decimal Byte	Data Type	Description
	0x01	Byte 00	unsigned8	0h~7h Special output data
0.2200	0x02	Byte 01	unsigned8	8h~15h Special output data
0x3200	:	:	:	:
	0x64	Byte 64	unsigned8	1F8h~1FFh Special output data

4) Default Identifier

CANopen provides default identifiers for the most important communication objects, and these are derived from the 7-bit node address(the node ID) and a 4-bit function code in accordance with the following scheme:

11Bit Identifier

10	9	8	7	6	5	4	3	2	1	0
	Fund	ction				Co	de Node	ID		

The COB ID are given according to DS301. This gives rise to the following default identifiers:

Object	Function	Function Code	COB ID(hex/dec)	Object for Communication parameter/mapping
NMT	Boot-up	0000	0x00/0	-
SYNC	Synch.	0001	0x80/128	0x1500+0x1006
EMERGENCY	Status/Error	0001	0x81-0xFF/129-255	-
PDO 1(Tx)	Digital Input	0011	0x181-0x1FF/385-511	0x1800/0x1A00
PDO 1(Rx)	Digital Output	0100	0x201-0x27F/513-639	0x1400/0x1600
PDO 2(Tx)	Analog Input	0101	0x281-0x2FF/641-767	0x1801/0x1A01
PDO 2(Rx)	Analog Output	0110	0x301-0x37f/769-895	0x1401/0x1601
SDO (Tx)	Parameter	1011	0x581-0x5ff/1409-1535	-
SDO (Rx)	Parameter	1100	0x601-0x67F/1537-1663	-
Nodeguard	Life/Nodeguard	1110	0x701-0x77F/1793-1919	0x100C,0x100D,0x100E

The COB ID can be changed vis SDO.

The PDOs 3-8 do not have default values in DeviceProfile 402. The COD ID of these PDOs have to be set by the user with regard to the COB ID which are already use by the network.

5) COMMUNICATION

- Structure of the device model

Communication. This function unit makes the communication data objects and the associated functionality for data exchange over the CANopen network available. The network status machine is part of this.

Object directory. This contains all the data objects (application data + parameters) that are accessible from outside and that affect the behavior of communication, application and status machines. The object directory is organised as a twoimensional table in which the data are addressed by their index and sub-index.

The data exchange with CANopen devices takes place by means of data objects. In the CANopen communication profile, two types of standard object (PDO and SDO) and special

User Manual

objects (for network management etc.) are defined.

The NA-9161 support the following objects:

- . 8 transmit PDOs
- . 8 receive PDOs
- . 1 standard SDO (server)
- . 1 emergency object
- . 1 synchronisation object (SYNC, without time stamp)
- . node guarding
- . NMT objects

Every CANopen device possesses a CANopen object directory in which the parameters for all the CANopen objections are entered.

- PDO (Process Data)

In many fieldbus systems the entire process image is continuously transferred - usually in a more or less cyclic manner.

CANopen is not limited to this communication principle, since the multi-master bus access protocol allow CAN to offer other methods.

The process data in CANopen is divided into segments with a maximum of 8 bytes. These segments are known as process data objects(PDOs). The PDOs each correspond to a CAN telegram, whose specific CAN identifier is used to allocate them and to determine their their priority.

The PDOs are named from the point of view of the bus coupler: receive PDOs (RxPDOs) are received by the coupler and contain output data, while transmit PDOs (TxPDOs) are sent by the coupler and contain input data.

- PDO Mapping

CANopen specifies the data assignment for the first two PDOs in the device profile for input/output groups(DS401)("default mapping"). The first PDO is provided for digital inputs (TxPDO1) or outputs (RxPDO1). The first 4 analogue inputs or outputs are located in second PDO. These PDOs are accordingly occupied by the bus couplers - if , for instance, no digital output terminals are plugged in RxPDO1 remains empty.

Once the first PDOs have been occupied, the next PDOs are filled with process data in the following sequence :

1. Digital I/Os (1-byte)

User Manual

- 2. Digital I/Os (2-byte)
- 3. Analog I/Os

- PDO Identifier

For the first two PDOs(PDO1 + PDO2) CANopen provides default identifiers depending on the node address, but all other PDOs must have identifiers assigned to them. The principle of the default identifiers is explained in the section on "Network Manangement", and there is a list of all the CANopen default identifiers in the appendix.

Pre-Define Connection Set

In the system of default identifiers all the nodes (here : salves) communicate with one central station (the master) , since slave nodes do not listen by default to the send identifier of other slave nodes:

PDO Linking

If the consumer-producer model of CANopen PDOs is to be used for direct data exchange between nodes (without a master), the distribution of identifiers must be appropriately adapted, so that the TxPDO indentifier of the producer agrees with the RxPDO identifier of the consumer:

User Manual

This procedure is known as PDO linking. It permits, for example, easy construction of electronics drives in which several slave axes simultaneously listen to the actual value in the master axis TxPDO.

- PDO Communication Type (Event driven)

The "event" is the alteration of an input value, the data being transmitted immediately after this change. The event-driven flow can make optimal use of the bus bandwidth, since instead of the whole process image it is only the changes in that are transmitted. A short reaction time is achieved at the same time, since when an input value changes it is not necessary to wait for the next interrogation from a master.

Polling

The PDOS can also be polled by data request telegrams (remote frames). In this way It is possible to get the input process image of event-driven inputs onto the bus, even when the inputs have not changed, for instance by a monitoring or diagnostic device brought into the network while it is running.

The Crevis CANopen bus adaptor support the interrogation of PDOs by means of remote frames.

Synchronized

It is not only for drive applications that it is worthwhile to synchronize the determination of the input information and the setting the outputs. For this purpose CANopen provides the SYNC object, a CAN telegram of high priority but containing no user data, whose reception is used by the synchronized nodes as a trigger for reading the inputs or for setting the outputs:

PDO transmission type

The "PDO transmission type" parameter specifies how the transmission of the PDO is triggered, or how received PDOs handled:

Transmission type	PDO transmission				
	cyclic	acyclic	synchronous	asynchronous	RTR only
0		х	x		
1-240	Х		X		
241-251	Reserved				
252			x		Х
253				Х	Х
254				Х	
255				Х	

Synchronous

Transmission type 0 is only useful for RxPDOs: the PDO is only used when the next SYNC telegram is received. In transmission type 1-240 the PDO is cyclically transmitted or expected : after every "nth" SYNC(n=1...240).

since transmission types can be combined on a coupler as well as in the network, it is possible, for example, for a fast cycle to be agreed for digital inputs (n=1), whereas the data for analogue inputs is transmitted in a shower cycle (e.g.n=10).

The cycle time (SYNC rate) can be monitored (object 0x1006), so that if the SYNC fails the Adaptor switches its outputs into the fault state.

Asynchronous

The transmission types 254 + 255 are asynchronous, but may also be event-driven. In transmission type 254, the event is specific to the manufacturer, whereas for type 255 it is defined in the device profile. Since the Beckoff CANopen bus couplers support device profile DS401 no distinction is made here between the two transmission type.

Inhibit Time

The "inhibit time" parameter can be used to implement a " transmit filter" that dose not increase the reaction time for relatively new input alterations, but is active for changes that follow immediately afterwards. The inhibit time(transmit delay time) specifies the minimum length of time that must be allowed to elapse between the transmission of two the same telegrams. If the inhibit time is used, the maximum bus loading can be determined, so that the worst case latency can then be found.

SDO(Service Data)

The parameters listed in the object direcory are read and written by means of service data objects. these SDOs are Multiplexed domains, i.e. structures of any size that have a multiplexer (address). The multiplxer consist of a 16-bit index and an 8-bit sub-index that that address the corresponding entries in the object directory.

Byte0	Byte1-3: dat	a addressing		Byte4-7: 1-4	byte of data		
Commnand	Index	Index	Subindov	Data0	Data1	Data 2	Data 3
Specifier	Low Byte	High Byte	Subindex	Dalau	DalaT	Dala Z	Dala S
-Upload							
-Download							
-Number of	data byte						
-Request							
-Response							
		Index	s	ub-index	Dat	a	

The CANopen bus couplers are servers for the SDO, which means that at the request of a client they make data available(upload), or they receive data from the client(downlad).

This involves a handshake between the client and the server. When the size of the parameter to be transferred is not more than 4 bytes, a single handshake is sufficient (one telegram pair).

For a download, the client sends the data together with its index and subindex, and the server confirms reception. for an upload, the client requests the data by transmitting the index and sub-index of the desired parameter, and the server sends the parameter (including index and sub-index) in its answer telegram. The same pair of identifiers is used for both upload and download. The telegrams, which are always 8 bytes long, encode the various services in the first data byte.

All parameters with the exception of objects 1008h, 1009h and 100Ah(device name, hardware and software versions) are only at most 4 bytes long, so this description is restricted to transmission in expedited transfer.

3.CANopen Network Installation

CANOpen Network Set up is like following figure1.

Figure 1. CANOpen Network Example

1) CANopen Network Start-up

CANopen defines a state machine that controls the functionality of a device. Transition between the individual states is initiated by internal events or services from the NMT master. These devcies states can be connected to application processes.

In Initialization state, the CANopen data structures of a node are initialized by the application. The CIA DS-301 standard defines various mandatory OD entries for this task as well as specific communication objects required for that. In the minimum device configuration, the identifier for these communication objects must correspond to the so-called pre-Dfined

Connection-Set. The device profiles define further settings for the applicable device class. The pre-defined settings for identifier for emergency, PDOs and SDOs are calculated based on the node address(Node ID), that can be in the range from 1 to 99, added to a base identifier that determines the function of the individual object.

After Initialization is completed the node automatically switches into PRE-OPERATIONAL(12) states. The NMT master will be informed about this state change with the BOOT-UP message sent by the corresponding node. In this state it is not possible to communicate with the node using PDOs. However, the node can be configured over the CAN bus using SDOs PRE-OPERATIONAL state. NMT services and Life Guarding are also available in this state.

The application as well as the available resources of the CANopen device determine to what extend configuration over the CAN bus with the help of SDOs must take place. For example, if the CANopen device dose not provide a non-volatile memory to store mapping and communication parameters for PDOs and these parameters differ from the default values, then these parameters must be transmitted to the node over the network after initialization is completed.

After the configuration of these parameters by the application or NMT master is completed, the NMT service start_Remote_Node(6) can be use to render the node from PRE-OPERATIONAL state into OPERATIONAL state. This state change also causes the initial transmission of all TPDO s independently of whether an event for it is present. Each susequent transmission of PDOs then always takes place as a function of an event. All CANopen devices also support the Stop_Remote_Node(7), Enter_PRE_OPERATIONAL_ State(8), Reset_Node(10), Reset_Communication(11)services.

Reset_Node is used to reset the application-specific data and the communication parameter of the node. This state change is comparable with an initial operation of the node.

If the NMT service Reset_Communication is used to Change the state of a node, then loading initial values exclusive for the communication parameters in the CANopen stack takes place.

No communication via PDO and SDO is possible if the device is in STOPPED state. Only NMT services, Node Guarding, Life Guarding as well as Heartbeat are possible in this state

2) Boot-up Message

After the initialization phase and the self test, the bus coupler sends the boot-up message, a CAN message with no data bytes and with the identifier of the emergency message : CAN-ID = 0x80 + node ID.

3) Node Guarding

Node Guarding represents a means of node supervision that is initiated by the NMT master. This service is used to request the node's operational state and to determine whether the node is functioning correctly. The NMT master transmits a single

Node Guard message to the slave in the form of a remote frame with the CAN identifier 0x700 plus the node address of the NMT slave. As a response to this remote frame, the NMT slave sends a CAN message back containing its current NMT state and a one bit that toggles between two subsequent messages.

Response from the NMT Slave to a Node Guard Remote Frame:

Identifier		Data
Identifier	DLC	0
0x700 + Node Address	1	Status Byte

Node State of a CANopen Device

Status Byte	Node State
0x00	BOOT-UP
0x04	STOPPED
0x05	OPERATIONAL
0x7F	PRE-OPERATIONAL

Bit 7 of the status byte always starts with a 0 and changes its value after each transmission. The application is responsible for actively toggling this bit. This ensures that the Node Guard response message from a slave is not just stored in one of the Full-CAN channels. Thus the NMT master will get the confirmation from the NMT slave node that the application is still running.

4) Life Guarding

As an alternative to Node Guarding node supervision can also be performed by Life Guarding services. In contrast to the Node Guarding the NMT master cyclically sends a Life Guard message to the slave in the form of a remote frame with the CAN identifier 0x700 plus the node address of the NMT slave. As a response to this remote frame, the NMT slave sends a CAN message back containing its current NMT state and a one bit that toggles between two subsequent messages. With being missing the answer or unexpected status of the slave the NMT masters application is informed. Further the slave can detect the loss of the masters. The Life Guarding is started with the transmission of the first Life Guard message of the masters.

Response from the NMT Slave to a Life Guard Remote Frame

Identifier	

DLC

		0
0x700 + Node Address	1	Status Byte

Meaning of the status byte corresponds to that of he Node Guarding message. The Life Guarding supervision on the NMT slave node is deactivated, if the Life Guard time (object entry 0x100C in the object dictionary) or the Life time factor(object entry 0x100D in the object dictionary) are equal to zero.

4. Check Operation Status

When all installation and configuration processes are complete, the adaptor module status LED(RUN LED) shall be lit in a green color. If not, it indicates that an error has occurred. See the following table for proper measures.

1) RUN : CAN-RUN LED

State	LED is	Description
Not Powered Not On-line	Off	The Device is not on-line or may not be powered Not completed the Dup-Mac_ID test yet
On-line, STOPPED	Single Flash Green	The Device is in STOPPED state
On-line, PRE-OPERATIONAL	Blinking Green	The Device is in the PRE-OPERATIONAL state
On-line, OPERATIONAL	Green	The Device is in the OPERATIONAL state

2) ERR : CAN-ERR LED

State	LED is	Description			
Not Powered Not On-line	Off	Device is in mode baud rate search or may not be powered.			
Warning limit reached On-line	Single Flash Red	At least one of the error counters of the CAN controller has reached or exceeded the warning level(too many error frames).			
Error Control Event On-line	Double Flash Red	The guarding monitor has asserted, guarding telegrams are no longer being received. The adapter is pre-operational state.			
Sync Error On-line	Triple Flash Red	A sync error has occurred. - The adapter is pre-operational(PDOs switch off).			
Bus Off	Red	Device is in the cyclic data exchange mode with the parameterization master			
3) I/O : Expansion Module Status LED					
State	LED is	To Indicate			

User Manual

Not Powered No Expansion Module	Off	Device has no expansion module or may not be powered
FnBus On-line, Do Not Exchanging I/O	Flash Green	Fn-Bus is on-line but does not exchanging I/O data - Passed the expansion module configuration.
FnBus Connection Run Exchanging I/O	Green	Expansion Slot is connected and run exchanging I/O data
FnBus connection fault during exchange IO	Red	One or more expansion module occurred in fault state. - FnBus communication failure
Expansion Configuration Failed	Flash Red	 Failed to initialize expansion module Detected invalid expansion module ID. Overflowed Input/Output Size Initial protocol failure

4) Field Power : Field Power Status LED

State	LED is	To Indicate
Not Supplied Field Power	Off	Not supplied 24Vdc field power
Supplied Field Power	Green	Supplied 24Vdc field power

CREVIS Co., Ltd

D-11F, Digital Empire Bldg., 980-3, Youngtong-Dong, Youngtong-Gu, Suwon, GyeongGi-Do, Korea TEL : +82-31-206-8077~8 Sales : +82-31-273-6452 FAX : +82-31-206-8079 E-mail : crevis@crevis.co.kr Homepage : http://crevis.co.kr

.

.